MODELING OF FINITE INHOMOGENEITIES BY DISCRET SINGULARITIES
نویسندگان
چکیده
This work focuses on development of a mathematical apparatus that allows to perform an approximate description inhomogeneities finite sizes in continuous bodies by arranging the sources given sets smaller dimensions. The structure and properties source densities determine adequacy model. theory differential forms generalized functions underlies this study. boundary value problems with nonsmooth coefficients are formulated. solutions such is sought form weakly convergent series as alternative - equivalent recurrent set jumps. A feature approach ability consistently improve inhomogeneity. important because it qualitatively assess impact real characteristic accuracy model description. Reducing dimensions use efficient methods Green's function integral equations obtain semi-analytic solution for direct inverse problems. based number partial demonstrate proposed modeling inhomogeneities. defects oscillating elastic beam, arbitrary shape plate, fragile cracks two-dimensional body under static loading considered.
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
A hybrid smoothed extended finite element/level set method for modeling equilibrium shapes of nano-inhomogeneities
Interfacial energy plays an important role in equilibrium morphologies of nanosized microstructures of solid materials due to the high interface-to-volume ratio, and can no longer be neglected as it does in conventional mechanics analysis. The present work develops an effective numerical approach by means of a hybrid smoothed extended finite element/level set method to model nanoscale inhomogen...
متن کاملClassification of possible finite-time singularities by functional renormalization.
Starting from a representation of the early time evolution of a dynamical system in terms of the polynomial expression of some observable phi(t) as a function of the time variable in some interval 0 < or = t < or = T, we investigate how to extrapolate/forecast in some optimal stability sense the future evolution of phi(t) for time t>T. Using the functional renormalization of Yukalov and Gluzman...
متن کاملSolution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کاملRings of Singularities
This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Žurnal ob?islûval?noï ta prikladnoï matematiki
سال: 2021
ISSN: ['2706-9699', '2706-9680']
DOI: https://doi.org/10.17721/2706-9699.2021.1.18